# WL01 WAVES IN 2D

SPH4U



# CH 9 (KEY IDEAS)

- analyze and interpret the properties of two-dimensional mechanical waves in a ripple tank and relate them to light
- derive and apply equations involving the speed, wavelength, frequency, and refractive index of waves and apply them to the behaviour light
- analyze two-point-source interference patterns in a ripple tank and in the interference of light (Young's experiment) using diagrams
- derive and apply equations relating the properties of wave interference and wavelength
- outline the historical development of the particle and wave theories of light, including the development of new technologies and discoveries, and summarize the successes and failures of each theory
- apply the wave theory to the property of dispersion and determine the wavelengths of the colours of the visible spectrum

# EQUATIONS

• Wave Equations

$$f = \frac{1}{T}$$

• Universal Wave Equation

$$v = f\lambda$$
$$c = f\lambda$$

• Snell's Law with Universal Wave Equation  $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ 

# RECALL

- **Amplitude (a) [m]:** the height of a crest or trough of a wave from neutral
- Wavelength (λ) [m]: the spacing between the crests (or troughs) of a wave
- Frequency (f) [Hz = 1/s]: the number of wavelengths that pass by a fixed point in one second
- **Period (T) [s]:** the time is takes one wavelength to pass by a fixed point



#### TRANSMISSION

• **Transverse Wave:** periodic disturbance where particles in the medium oscillate at right angles to the direction in which the wave travels



# TRANSMISSION – CONT.

- Waves move away from the source
  - A <u>linear</u> source creates a <u>straight</u> wave
  - A point source creates a circular wave
- Wave Front: the leading edge of a continuous crest or trough
- Wave Ray: a straight line, drawn perpendicular to a wave front, indicating the direction of transmission



circular wave

# TRANSMISSION – CONT.

- For waves coming from a constant-frequency source, a change in medium will affect the wave properties
- Mediums that slow down a wave (for example: shallow water) will decrease its wavelength ( $\lambda \propto v$ )
- A wave with a higher frequency will also have a shorter wavelength  $(f \propto \frac{1}{\lambda})$
- Universal Wave Equation: the relationship between the speed, frequency and wavelength of a wave; applicable in all three dimensions  $v = f\lambda$



# TRANSMISSION – CONT.

- Consider a wave with constant frequency, *f* :
- For an initial conditions speed,  $v_1$ , we have  $v_1 = f \lambda_1$
- If we change the speed of the wave to  $v_2$  , we have  $v_2 = f \lambda_2$
- The ratio of the two conditions is

$$\frac{v_1}{v_2} = \frac{f\lambda_1}{f\lambda_2} = \frac{\lambda_1}{\lambda_2}$$

# PROBLEM 1

A water wave has a wavelength of 2.0 cm in the deep section of a tank and 1.5 cm in the shallow section. If the speed of the wave in the shallow water is 12 cm/s, what is its speed in the deep water?

#### PROBLEM 1 – SOLUTIONS

 $\lambda_1 = 2.0 \text{ cm}$  $\lambda_2 = 1.5$  cm  $v_2 = 12 \, \text{cm/s}$  $v_1 = ?$  $\frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$  $v_1 = \left(\frac{\lambda_1}{\lambda_2}\right)v_2$  $= \left(\frac{2.0 \text{ cm}}{1.5 \text{ cm}}\right) 12 \text{ cm/s}$  $v_1 = 16 \text{ cm/s}$ 

The speed of the wave in deep water is 16 cm/s.

# **RECALL – DEFINITIONS**

- Normal: a straight line drawn perpendicular to a barrier struck by a wave
- Angle of Incidence  $(\theta_i)$ : the angle between the incident wave front and the barrier, or the angle between the incident ray and the normal
- Angle of Reflection  $(\theta_r)$ : the angle between the reflected wave front and the barrier, or the angle between the reflected ray and the normal
- Angle of Refraction ( $\theta_R$ ): the angle between the normal and the refracted ray, or between the refracted wave front and the boundary

### **REFLECTION-REFRACTION OF WAVES**



# REFLECTION FROM A STRAIGHT BARRIER

- If a wave encounters a straight barrier head on (perpendicular) it is reflected back along its original path
- $\bullet$  At any angle other than 90°, it is reflected at the same angle
- The speed, frequency and wavelength are unchanged





# REFRACTION

higher speed

(a)

boundary

incident

wave front (

- **Refraction:** the bending effect on a wave's direction that occurs when the wave enters a different medium at an angle
- When entering a medium where a wave <u>slows</u> <u>down</u>, the path bends <u>towards</u> the normal
- When entering a medium where the wave <u>speeds</u> <u>up</u>, the path bends <u>away from</u> the normal



higher speed (deep water)

# • Geometrically, we can see that $\sin \theta_i = \frac{\lambda_1}{xy}$ and $\sin \theta_R = \frac{\lambda_2}{xy}$

• *xy* – the section of the boundary through which the wave passes



• The ratio of the sines gives us  $\frac{\sin \theta_i}{\sin \theta_R} = \frac{\left(\frac{\lambda_1}{xy}\right)}{\left(\frac{\lambda_2}{xy}\right)} = \frac{\lambda_1}{\lambda_2}$ • Since  $\frac{\lambda_1}{\lambda_2}$  is constant,  $\sin \theta_i \propto \sin \theta_R$ , so  $\frac{\sin \theta_i = n \sin \theta_R}{\frac{\sin \theta_i}{\sin \theta_R}} = n$ • *n* – index of refraction (proportionality constant)

• Absolute Index of Refraction (*n*): the index of refraction for light passing from air or a vacuum into a substance  $c = \frac{\sin \theta_i}{\sin \theta_i}$ 

$$n = \frac{1}{v} = \frac{1}{\sin \theta_R}$$

• *c* – speed of light in a vacuum

| Substance         | Absolute Refractive Index |
|-------------------|---------------------------|
| vacuum            | 1.000 000                 |
| air               | 1.000 29                  |
| ice               | 1.31                      |
| water             | 1.333                     |
| ethyl alcohol     | 1.36                      |
| turpentine        | 1.472                     |
| glass             | 1.50                      |
| Plexiglas         | 1.51                      |
| crown glass       | 1.52                      |
| polystyrene       | 1.59                      |
| carbon disulphide | 1.628                     |
| flint glass       | 1.66                      |
| zircon            | 1.923                     |
| diamond           | 2.417                     |
| gallium phosphide | 3.50                      |

• Combining what we have learned about the refraction of waves and the Universal Wave Equation, we get

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

## PROBLEM 2

A 5.0 Hz water wave, travelling at 31 cm/s in deep water, enters shallow water. The angle between the incident wave front in the deep water and the boundary between the deep and shallow regions is 50°. The speed of the wave in the shallow water is 27 cm/s. Find

- (a) the angle of refraction in the shallow water
- (b) the wavelength in shallow water

#### PROBLEM 2 – SOLUTIONS

(a) f = 5.0 Hz  $\theta_1 = 50.0^\circ$  $v_1 = 31 \, \text{cm/s}$   $\theta_2 = ?$  $v_2 = 27 \, \text{cm/s}$  $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$  $\sin \theta_2 = \left(\frac{v_2}{v_1}\right) \sin \theta_1$  $\sin \theta_2 = \left(\frac{27 \text{ cm/s}}{31 \text{ cm/s}}\right) \sin 50.0^\circ$  $\theta_2 = 41.9$ , or  $42^{\circ}$ 

The angle of refraction is 42°.

#### PROBLEM 2 – SOLUTIONS CONT.

(b) 
$$\lambda_2 = \frac{v_2}{f_2} \quad \text{but } f_2 = f_1 = 5.0 \text{ Hz}$$
$$= \frac{27 \text{ cm/s}}{5.0 \text{ Hz}}$$
$$\lambda_2 = 5.4 \text{ cm}$$

#### The wavelength in shallow water is 5.4 cm.

#### PROBLEM 3

For a light ray travelling from glass into water, find

- (a) the angle of refraction in water, if the angle of incidence in glass is 30.0°(b) the speed of light in water
  - $n_{\rm g} = n_1 = 1.50$   $\theta_{\rm g} = \theta_1 = 30.0^{\circ}$  $n_{\rm w} = n_2 = 1.333$   $\theta_{\rm w} = \theta_2 = ?$

# PROBLEM 3 – SOLUTIONS

(a) 
$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$
$$\frac{\sin \theta_2}{\sin \theta_w} = \frac{n_w}{n_g}$$
$$\frac{\sin 30.0^\circ}{\sin \theta_w} = \frac{1.333}{1.50}$$
$$\sin \theta_w = \frac{1.50 \sin 30.0^\circ}{1.333}$$
$$\theta_w = 34.3^\circ$$

The angle of refraction in water is 34.3°.

#### PROBLEM 3 – SOLUTIONS CONT.

(b)  $n_{\rm a} = n_1 = 1.00$  $n_{\rm w} = n_2 = 1.333$  $v_1 = c = 3.00 \times 10^8 \text{ m/s}$  $V_2 = ?$  $\frac{V_1}{V_2} = \frac{n_2}{n_1}$  $v_2 = \frac{n_1 v_1}{n_2}$  $(1.00)(3.00 \times 10^8 \text{ m/s})$ 1.333  $v_2 = 2.26 \times 10^8 \text{ m/s}$ The speed of light in water is  $2.26 \times 10^8$  m/s.

# PARTIAL REFLECTION-REFRACTION

- Critical Angle ( $\theta_c$ ): the angle of incidence on a less dense (faster) medium for which the angle of refraction is 90°
- **Total Internal Reflection:** the reflection of light in an optically denser medium; it occurs when the angle of incidence in the denser medium is greater than a certain critical angle



# SUMMARY: WAVES IN TWO DIMENSIONS

- The wavelength of a periodic wave is directly proportional to its speed.
- The frequency of a periodic wave is determined by the source and does not change as the wave moves through different media or encounters reflective barriers.
- All periodic waves obey the universal wave equation,  $v = f\lambda$ .
- The index of refraction for a pair of media is the ratio of the speeds or the ratio of the wavelengths in the two media  $\left(\frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}\right)$ .
- Snell's law  $\left(n = \frac{\sin \theta_i}{\sin \theta_R}\right)$  holds for waves and for light.
- When a wave passes from one medium to another, the wavelength changes and partial reflection-partial refraction can occur.



#### Readings

• Section 9.1 (pg 444)

#### Questions

• pg 452 #1,3,5,7,8